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1 Linear Regression

1.1 Assumptions

1. Weak Exogeneity

2. Linearity

3. Constant variance (Homoscedasticity)

4. Independence of Errors

5. Lack of Perfect Multicollinearity

2 Quantile Regression

Estimate a given quantile, i.e. the median, of Y conditional on X. The conditional distribution function of
Y given X = x is

F (y | X = x) := P{Y ≤ y | X = x}

and the α th conditional quantile function is

qα(x) := inf{y ∈ R : F (y | X = x) ≥ α}.

Suppose fixed lower and upper quantiles: αlo = α/2 and αhi = 1 − α/2. Given qαlo
(x) and qαhi

(x), the
corresponding lower and upper conditional quantile functions, the conditional prediction interval for Y given
X = x, with miscoverage rate α is

C(x) = [qαlo
(x), qαhi

(x)]

By construction, this interval satisfies

P{Y ∈ C(X) | X = x} ≥ 1− α.

The length of the interval C(X) can vary greatly depending on the value of X, which reflects the uncertainty
in the prediction of Y .

Classical regression analysis estimates the conditional mean of the test response Yn+1 given the features
Xn+1 = x by minimizing the sum of squared residuals on the n training points:

µ̂(x) = µ(x; θ̂), θ̂ = argmin
θ

1

n

n∑
i=1

(Yi − µ (Xi; θ))
2
+R(θ).

where θ are the parameters of the regression model, µ(x; θ) is the regression function, and R is a regularizer.
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Analogously, quantile regression estimates a conditional quantile function qα of Yn+1 given Xn+1 = x.
This can be cast as the optimization problem

q̂α(x) = f(x; θ̂), θ̂ = argmin
θ

1

n

n∑
i=1

ρα (Yi, f (Xi; θ)) +R(θ),

where f(x; θ) is the quantile regression function and the loss function ρα is the “pinball loss”

ρα(y, ŷ) :=

{
α(y − ŷ) if y − ŷ > 0,

(1− α)(ŷ − y) otherwise

Quantile Regression Procedure: construct a prediction band with nominal miscoverage rate α, estimate
q̂αlo

(x) and q̂αhi
(x) using quantile regression, then output Ĉ (Xn+1) = [q̂αlo

(Xn+1) , q̂αhi
(Xn+1)] as an esti-

mate of the ideal interval C (Xn+1). This yields intervals that are adaptive to heteroscedasticity. However,
it is not guaranteed to satisfy the coverage statement

P{Y ∈ C(X) | X = x} ≥ 1− α.

when C(X) is replaced by the estimated interval Ĉ (Xn+1) due to the absence of any finite sample guarantee,
which can result in undercoverage.

3 Conformal Prediction

Given n training samples {(Xi, Yi)}ni=1, we want to predict the unknown value of Yn+1 at a test point

Xn+1. Assume that all the samples {(Xi, Yi)}n+1
i=1 are drawn exchangeably-for instance, drawn i.i.d.-from

an arbitrary joint distribution PXY over the feature vectors X ∈ Rp and response variables Y ∈ R. We
aim to construct a marginal distribution-free prediction interval C (Xn+1) ⊆ R that is likely to contain the
unknown response Yn+1. That is, given a desired miscoverage rate α, we ask that

P {Yn+1 ∈ C (Xn+1)} ≥ 1− α

for any joint distribution PXY and any sample size n. The probability in this statement is marginal, being
taken over all the samples {(Xi, Yi)}n+1

i=1 .

To accomplish this, training data is split into two disjoint subsets, a proper training set and a calibra-
tion set. Fit two quantile regressors on the proper training set to obtain initial estimates of the lower and
upper bounds of the prediction interval. Then, using the calibration set, conformal prediction is applied and,
if necessary, the prediction interval is corrected. Unlike the original interval, the conformalized prediction
interval is guaranteed to satisfy the coverage requirement regardless of the choice or accuracy of the quantile
regression estimator

P {Yn+1 ∈ C (Xn+1)} ≥ 1− α.

The split conformal method begins by splitting the training data into two disjoint subsets: a proper training
set {(Xi, Yi) : i ∈ I1} and calibration set {(Xi, Yi) : i ∈ I2}. Then, given any regression algorithm A, a
regression model is fit to the proper training set:

µ̂(x)← A ({(Xi, Yi) : i ∈ I1}) .

Then, the absolute residuals are computed on the calibration set:

Ri = |Yi − µ̂ (Xi)| , i ∈ I2.

For a given level α, compute a quantile of the empirical distribution of the absolute residuals,

Q1−α (R, I2) := (1− α) (1 + 1/ |I2|) -th empirical quantile of {Ri : i ∈ I2} .

Then, the prediction interval at a new point Xn+1 is given by

C (Xn+1) = [µ̂ (Xn+1)−Q1−α (R, I2) , µ̂ (Xn+1) +Q1−α (R, I2)] .
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4 Conformalized Quantile Regression Regression

As in split conformal prediction, split the data into a proper training set, indexed by I1, and a calibration
set, indexed by I2. Given any quantile regression algorithm A, fit two conditional quantile functions q̂αlo

and q̂αhi
on the proper training set:

{q̂αlo
, q̂αhi

} ← A ({(Xi, Yi) : i ∈ I1}) .

Next, compute conformity scores that quantify the error made by the plug-in prediction interval Ĉ(x) =
[q̂αlo

(x), q̂αhi
(x)] on the calibration set:

Ei := max {q̂αlo
(Xi)− Yi, Yi − q̂αhi

(Xi)}

for each i ∈ I2.

1. If Yi is below the lower endpoint of the interval, Yi < q̂αlo
(Xi), then Ei = |Yi − q̂αlo

(Xi)| is the
magnitude of the error incurred by this mistake. (Undercoverage)

2. If Yi is above the upper endpoint of the interval, Yi > q̂αhi
(Xi), then Ei = |Yi − q̂αhi

(Xi)|. (Under-
coverage)

3. If Yi correctly belongs to the interval, q̂αlo
(Xi) ≤ Yi ≤ q̂αhi

(Xi), then Ei is the larger of the two
non-positive numbers q̂αlo

(Xi)− Yi and Yi − q̂αhi
(Xi) and so is itself non-positive. (Overcoverage)

The conformity score thus accounts for both undercoverage and overcoverage.

Finally, given new input data Xn+1, we construct the prediction interval for Yn+1 as

C (Xn+1) = [q̂αlo
(Xn+1)−Q1−α (E, I2) , q̂αhi

(Xn+1) +Q1−α (E, I2)]

where
Q1−α (E, I2) := (1− α) (1 + 1/ |I2|) -th empirical quantile of {Ei : i ∈ I2}

conformalizes the plug-in prediction interval.

Theorem 1. If (Xi, Yi) , i = 1, . . . , n+1 are exchangeable, then the prediction interval C (Xn+1) constructed
by the split CQR algorithm satisfies

P {Yn+1 ∈ C (Xn+1)} ≥ 1− α

Moreover, if the conformity scores Ei are almost surely distinct, then the prediction interval is nearly perfectly
calibrated:

P {Yn+1 ∈ C (Xn+1)} ≤ 1− α+
1

|I2|+ 1
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