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Abstract: Control the expected value of any monotone loss function via conformal prediction, that is
tight up to an O(1/n) factor.

1 Introduction

1.1 Setting and Notation

Consider a calibration dataset (Xi, Yi)i=1,...,n ∼ i.i.d. s.t. features vectors Xi ∈ X and response Yi ∈ Y.
Conformal prediction seeks to bound the miscoverage, of a new test point (Xn+1, Yn+1)

P (Yn+1 /∈ C (Xn+1)) ≤ α (1)

where α is a user-specified error rate, and C is a function of the model and calibration data that produces
the prediction set.

Objective: Provide guarantee called, conformal risk control, of the form

E [ℓ (C (Xn+1) , Yn+1)] ≤ α, (2)

for any bounded loss function ℓ that has an inverse relation with C(Xn+1).

Remark: Recover conformal miscoverage guarantee with ℓ (C (Xn+1) , Yn+1) = 1 {Yn+1 /∈ C (Xn+1)}.

Conformal risk control seeks to find a threshold λ̂ that controls the proportion of missed classes:

E
[
ℓ
(
Cλ̂ (Xn+1) , Yn+1

)]
= E

[
1− |Yn+1 ∩ Cλ (Xn+1)|

|Yn+1|

]
Note: the threshold λ will be defined s.t. it increases with |Cλ(x)|; in other words, as λ grows, Cλ(x) becomes
more conservative.

1.2 Algorithm and Preview of Main Results

Given base model f , post-process the predictions to produce a function Cλ(·). The quality of the output of
Cλ will be quantified by a loss function ℓ (Cλ(x), y) ∈ (−∞, B] for some B < ∞, that is a non-increasing as
function of λ.

Goal: Choose λ̂ based on the observed data {(Xi, Yi)}ni=1 s.t. the risk control in (2) holds.

Consider an exchangeable collection of non-increasing, random functions Li : Λ → (−∞, B], i = 1, . . . , n+1.

Assume λmax ≜ supΛ ∈ Λ. Use the first n functions to choose a value of the parameter, λ̂, s.t. the risk on
the unseen function is controlled:
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E
[
Ln+1(λ̂)

]
≤ α (3)

Let R̂n(λ) =
(L1(λ)+...+Ln(λ))

n . Given any desired risk level upper bound α ∈ (−∞, B), define

λ̂ = inf

{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
. (4)

When the set is empty, take λ̂ = λmax.

The proposed conformal risk control algorithm deploys λ̂ on the new test point to achieve the guarantee in (3).

When the Li are i.i.d. from a continuous distribution, the algorithm satisfies a tight lower bound illus-
trating that it is not too conservative,

α− 2B

n+ 1
≤ E

[
Ln+1(λ̂)

]
≤ α.

2 Theory

2.1 Risk Control

Theorem 1. Assume that Li(λ) is non-increasing in λ, right-continuous, and

Li (λmax) ≤ α, sup
λ

Li(λ) ≤ B < ∞ almost surely. (5)

Then
E
[
Ln+1(λ̂)

]
≤ α

Proof. Let R̂n+1(λ) =
(L1(λ)+...+Ln+1(λ))

n+1 and

λ̂′ = inf
{
λ ∈ Λ : R̂n+1(λ) ≤ α

}
.

Since Li(λ) is non-increasing in λ: infλ Li(λ) = Li (λmax) ≤ α, thus λ̂′ is well-defined almost surely.

By assumption Ln+1(λ) ≤ B, we have R̂n+1(λ) =
n

n+1 R̂n(λ) +
Ln+1(λ)

n+1 ≤ n
n+1 R̂n(λ) +

B
n+1 . Thus,(

R̂n+1(λ) ≤
) n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α︸ ︷︷ ︸

inf{LHS} =⇒ λ̂

=⇒ R̂n+1(λ) ≤ α︸ ︷︷ ︸
inf{RHS} =⇒ λ̂′

.

Since λ̂ = inf
{
λ : n

n+1 R̂n(λ) +
B

n+1 ≤ α
}
, taking the infimum on both sides implies λ̂′ ≤ λ̂ when the LHS

holds for some λ ∈ Λ.

When the LHS is above α for all λ ∈ Λ, the set,
{
λ : n

n+1 R̂n(λ) +
B

n+1 ≤ α
}
is empty, thus by definition, we

take λ̂ = λmax =⇒ λ̂ ≥ λ̂′. Thus, λ̂′ ≤ λ̂ almost surely. Since Li(λ) is non-increasing in λ,

E
[
Ln+1(λ̂)

]
≤ E

[
Ln+1

(
λ̂′
)]

(6)

Let E be the multiset of loss functions {L1, . . . , Ln+1}. Then λ̂′ is a function of E ⇐⇒ λ̂′ is a constant
conditional on E. Additionally, Ln+1(λ) | E ∼ Uniform ({L1, . . . , Ln+1}) by exchangeability. Combined
with the right-continuity of Li, it can be shown that

E
[
Ln+1

(
λ̂′
)
| E
]
=

1

n+ 1

n+1∑
i=1

Li

(
λ̂′
)
≤ α.

By the law of total expectation and (6), the proof is complete.
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2.2 A tight risk lower bound

Definition 2.1 (Jump Function). Quantifies the size of the discontinuity in a right-continuous function l(λ):

J(l, λ) = lim
ϵ→0+

l(λ− ϵ)− l(λ)

Note:

J(l, λ)

{
> 0 there is a discontinuity

= 0 there is no discontinuity

Lemma 1 (Jump Lemma). Assume that Li(λ) is non-increasing in λ, right-continuous, and

Li (λmax) ≤ α, sup
λ

Li(λ) ≤ B < ∞ almost surely,

further assume that the Li are i.i.d., Li ≥ 0, and for any λ, P (J (Li, λ) > 0) = 0, then any jumps in the
empirical risk are bounded, i.e.,

sup
λ

J
(
R̂n, λ

) a.s.
≤ B

n
.

Proof. By boundedness, the maximum contribution of any single point to the jump is B
n , so

∃λ : J
(
R̂n, λ

)
>

B

n
=⇒ ∃λ : J (Li, λ) > 0 and J (Lj , λ) > 0 for some i ̸= j.

Let Di = {λ : J (Li, λ) > 0} denote the sets of discontinuities in Li. Since Li is bounded monotone, Di has
countably many points.

Boole’s Inequality/Union Bound states that:

For a countable set of events A1, A2, A3, . . ., we have

P

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

P (Ai) .

This means that for any finite or countable set of events, the probability that at least one of the events
happens is no greater than the sum of the probabilities of the individual events.

This implies that

P
(
∃λ : J

(
R̂n, λ

)
>

B

n

)
≤
∑
i̸=j

P (Di ∩ Dj ̸= ∅)

Rewriting each term of the right-hand side using tower property and law of total probability gives

P (Di ∩ Dj ̸= ∅) = E [P (Di ∩ Dj ̸= ∅ | Dj)]

≤ E

∑
λ∈Dj

P (λ ∈ Di | Dj)

 = E

∑
λ∈Dj

P (λ ∈ Di)

 ,

Where the second inequality is because the union of the events λ ∈ Dj is the entire sample space, but
they are not disjoint, and the third equality is due to the independence between Di and Dj . Applying the
assumption P (J (Li, λ) > 0) = 0,

E

∑
λ∈Dj

P (λ ∈ Di)

 = E

∑
λ∈Dj

P (J (Li, λ) > 0)

 = 0.

Thus we have that

P
(
∃λ : J

(
R̂n, λ

)
>

B

n

)
≤ 0 =⇒ P

(
∃λ : J

(
R̂n, λ

)
>

B

n

)
= 0
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Theorem 2. In the setting of Theorem 1, further assume that the Li are i.i.d., Li ≥ 0, and for any λ,
P (J (Li, λ) > 0) = 0. Then the conformal risk control procedure is not too conservative:

E
[
Ln+1(λ̂)

]
≥ α− 2B

n+ 1

Proof. If Li (λmax) ≥ α− 2B
n+1 , then E

[
Ln+1(λ̂)

]
≥ α− 2B

n+1 .

Assume that Li (λmax) < α− 2B
n+1 . Define

λ̂′′ = inf

{
λ : R̂n+1(λ) +

B

n+ 1
≤ α

}
.

Since Li (λmax) < α− 2B
n+1 < α− B

n+1 , λ̂′′ exists almost surely.

Deterministically,

(L1(λ) + . . .+ Ln(λ))

n
≤ (L1(λ) + . . .+ Ln(λ))

n+ 1
=⇒ (n)R̂n(λ) ≤ (n+ 1)R̂n+1(λ) =⇒ n

n+ 1
R̂n(λ) ≤ R̂n+1(λ)

Since,

λ̂ = inf

{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
,

this yields that λ̂ ≤ λ̂′′.

Since Li(λ) is non-increasing in λ,

E
[
Ln+1

(
λ̂′′
)]

≤ E
[
Ln+1(λ̂)

]
By exchangeability and that λ̂′′ is a symmetric function of L1, . . . , Ln+1,

E
[
Ln+1

(
λ̂′′
)]

= E
[
R̂n+1

(
λ̂′′
)]

Now, find the lower-bound for R̂n+1

(
λ̂′′
)
, we have that:

α = R̂n+1

(
λ̂′′
)
+

B

n+ 1
−
(
R̂n+1

(
λ̂′′
)
+

B

n+ 1
− α

)
.

Equivalently:

R̂n+1

(
λ̂′′
)
= α− B

n+ 1
+

(
R̂n+1

(
λ̂′′
)
+

B

n+ 1
− α

)
.

By the Jump Lemma, bounding
(
R̂n+1

(
λ̂′′
)
+ B

n+1 − α
)
below by − B

n+1 gives

R̂n+1

(
λ̂′′
)
≥ α− 2B

n+ 1
.

Finally,

E
[
Ln+1(λ̂)

]
≥ E

[
Ln+1

(
λ̂′′
)]

≥ E
[
R̂n+1

(
λ̂′′
)]

≥ α− 2B

n+ 1
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Proposition 1. In the setting of Theorem 2, for any ϵ > 0, there exists a loss function and α ∈ (0, 1) s.t.

E
[
Ln+1(λ̂)

]
≤ α− 2B − ϵ

n+ 1

Proof. w.l.o.g., assume B = 1. Fix any ϵ′ > 0. Consider the following loss functions, which satisfy the
conditions in Theorem 2 :

Li(λ)
i.i.d.∼


1 λ ∈ [0, Zi)
k

k+1 λ ∈ [Zi,Wi) ,

0 else

where k ∈ N, the Zi
i.i.d.∼ Uniform(0, 1

2 ), the Wi
i.i.d.∼ Uniform( 12 , 1) for i ∈ {1, . . . , n+ 1} and α = k+1−ϵ′

n+1 .

Since λ̂ = inf{λ : n
n+1 R̂n(λ) +

B
n+1 ≤ α}, this implies that

R̂n(λ̂) ≤
k − ϵ′

n
. (7)

If n > k + 1, and λ ≤ 1
2 , R̂(λ) ≥ k

k+1 > k
n by our definition of Li(λ). Thus, it must be the case that λ̂ > 1

2 .

Since k ∈ N, and R̂n(λ) =
L1(λ)+···+Ln(λ)

n , by (7), we know that
∣∣∣{i ∈ {1, . . . , n} : Li(λ̂) > 0

}∣∣∣ ≤ ⌊ (k+1)(k−ϵ′)
k

⌋
≤

k. This immediately implies that
λ̂ ≥ W(n−k+1)

where W(j) denotes the j-th order statistic. Notice that for all λ > 1
2 ,

R(λ) = E [Li(λ)] =
k

k + 1
P (Wi > λ) =

k

k + 1
· 2(1− λ),

so R(λ̂) ≤ k
k+1 · 2

(
1−W(n−k+1)

)
. Let U(k) be the k-th smallest order statistic of n i.i.d. uniform random

variables on (0, 1). Then, by symmetry and rescaling, 2
(
1−W(n−k+1)

) d
= U(k),

R(λ̂) ⪯ k

k + 1
U(k),

where ⪯ denotes the stochastic dominance. It is well-known that U(k) ∼ Beta(k, n+ 1− k) and hence

E[R(λ̂)] ≤ k

k + 1
· k

n+ 1
.

Thus,

α− E[R(λ̂)] ≥ k + 1− ϵ

n+ 1
− k2

(n+ 1)(k + 1)
=

1

n+ 1
· (2− ϵ′) k + 1− ϵ′

k + 1
.

For any given ϵ > 0, let ϵ′ = ϵ/2 and k =
⌈
2
ϵ − 1

⌉
. Then

(2− ϵ′) k + 1− ϵ′

k + 1
≥ 2− ϵ,

implying that

α− E[R(λ̂)] ≥ 2− ϵ

n+ 1
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2.3 Conformal prediction reduces to risk control

The risk lower bround in Theorem 2 has a slightly worse constant than the usual conformal guarantee.

Consider conformal scores s (Xi, Yi) for some score function s : X × Y → R.

Rrediction sets for the test point Xn+1 are constructed as

Cλ̂ (Xn+1) =
{
y : s (Xn+1, y) ≤ λ̂

}
,

where λ̂ is the conformal quantile, i.e. the ⌈(n+1)(1−α)⌉
n sample quantile of {s (Xi, Yi)}ni=1.

Define the miscoverage loss LCvg
i (λ) = 1

{
Yi /∈ Ĉλ (Xi)

}
= 1 {s (Xi, Yi) > λ}

Recall:

λ̂ = inf

{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
; R̂n(λ) =

(L1(λ) + . . .+ Ln(λ))

n

λ̂ = inf

λ :
1

n+ 1

n∑
i=1

1 {s (Xi, Yi) > λ}︸ ︷︷ ︸
Li(λ)

+
1

n+ 1
≤ α

 = inf

{
λ :

1

n

n∑
i=1

1 {s (Xi, Yi) ≤ λ} ≥ ⌈(n+ 1)(1− α)⌉
n

}
︸ ︷︷ ︸

conformal prediction algorithm

.

Remark: B = 1 here since we are using a binary loss function, and ℓ (Cλ(x), y) ∈ (−∞, B] for some B < ∞.

From Theorem 2, we have that with the defined miscoverage loss function,

P
(
Yn+1 /∈ Cλ̂ (Xn+1)

)
≥ α− 2

n+ 1

Note: Distribution of discontinuities specializes to the continuity of the score function when the miscoverage
loss is used:

P
(
J
(
LCvg
i , λ

)
> 0
)
= 0 ⇐⇒ P (s (Xi, Yi) = λ) = 0.
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2.4 Controlling general loss function

Conformal risk control does not control the risk if the Li are not monotone.

Proposition 2. For any ϵ, there exists a non-monotone loss function such that

E
[
Ln+1(λ̂)

]
≥ B − ϵ

Consider an exchangeable collection of non-increasing, random functions Li : Λ → (−∞, B]. For any desired
level α,

E
[
Ln+1(λ̂)

]
≤ α

can be arbitrarily close to B. Thus, further assumptions must be placed on the Li to control the risk.

Proof. w.l.o.g., assume B = 1. Assume λ̂ takes values in [0, 1] and α ∈ (1/(n + 1), 1). Let p ∈ (0, 1), N be
any positive integer, and Li(λ) be i.i.d. right-continuous piecewise constant (random) functions with

Li(N/N) = 0, (Li(0/N), Li(1/N), . . . , Li((N − 1)/N))
i.i.d.∼ Ber(p).

By definition, λ̂ is independent of Ln+1. Thus, for any j = 0, 1, . . . , N − 1,{
Ln+1(λ̂) | λ̂ = j/N

}
∼ Ber(p),

{
Ln+1(λ̂) | λ̂ = 1

}
∼ δ0.

Then,

E
[
Ln+1(λ̂)

]
= p · P(λ̂ ̸= 1)

Note that

λ̂ ̸= 1 ⇐⇒ min
j∈{0,...,N−1}

1

n+ 1

n∑
i=1

Li(j/N) ≤ α− 1

n+ 1
.

Since α > 1/(n+ 1),

P(λ̂ ̸= 1) = 1− P(λ̂ = 1) = 1− P

(
for all j, we have

1

n+ 1

n∑
i=1

Li(j/N) > α− 1

n+ 1

)

= 1−

 n∑
k=⌈(n+1)α⌉

(
n
k

)
pk(1− p)(n−k)

N

= 1− (1− BinoCDF(n, p, ⌈(n+ 1)α⌉ − 1))N

As a result,

E
[
Ln+1(λ̂)

]
= p

(
1− (1− BinoCDF(n, p, ⌈(n+ 1)α⌉ − 1))N

)
.

Now let N be sufficiently large such that(
1− (1− BinoCDF(n, p, ⌈(n+ 1)α⌉ − 1))N

)
> p.

Then
E
[
Ln+1(λ̂)

]
> p2

For any α > 0, we can take p close enough to 1 to render the claim false.
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Corollary 2.1. Allow Li(λ) to be any (possibly non-monotone) function of λ satisfying:

Li (λmax) ≤ α, sup
λ

Li(λ) ≤ B < ∞

almost surely. Take

L̃i(λ) = sup
λ′≥λ

Li (λ
′) , R̃n(λ) =

1

n

n∑
i=1

L̃i(λ) and λ̃ = inf

{
λ :

n

n+ 1
R̃n(λ) +

B

n+ 1
≤ α

}
.

Then,

E
[
Ln+1(λ̃)

]
≤ α.

If the loss function is already monotone, then λ̃ reduces to λ̂.

3 Monotonizing non-monotone risks

Present an algorithm for picking λ that provides an asymptotic risk-control guarantee for non-monotone loss
functions when applied to a monotonized version of the empirical risk.

Let the monotonized empirical risk be
R̂↑

n(λ) = sup
t≥λ

R̂n(t),

then define
λ̂↑
n = inf

{
λ : R̂†

n(λ) ≤ α
}
.

Theorem 3. Let the Li(λ) be right-continuous, i.i.d., bounded (both above and below) functions satisfying

Li (λmax) ≤ α, sup
λ

Li(λ) ≤ B < ∞

almost surely. Then,

lim
n→∞

E
[
Ln+1

(
λ̂↑
n

)]
≤ α.

Proof. Define the monotonized population risk as

R†(λ) = sup
t≥λ

E [Ln+1(t)]

Note that the independence of Ln+1 and λ̂↑
n implies that for all n,

E
[
Ln+1

(
λ̂↑
n

)]
≤ E

[
R†
(
λ̂†
n

)]
.

Since R↑ is bounded, monotone, and one-dimensional, a generalization of the Glivenko-Cantelli Theorem
given in Theorem 1 of [40] gives that uniformly over λ,

lim
n→∞

sup
λ

∣∣∣R̂n(λ)−R(λ)
∣∣∣ a.s.→ 0.

As a result,

lim
n→∞

sup
λ

∣∣∣R̂↑
n(λ)−R†(λ)

∣∣∣ a.s.→ 0,

which implies that

lim
n→∞

∣∣∣R̂↑
n

(
λ̂↑
)
−R↑

(
λ̂↑
)∣∣∣ a.s.→ 0.
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By definition, R̂↑
(
λ̂↑
)
≤ α almost surely and thus this directly implies

lim sup
n→∞

R†
(
λ̂↑
n

)
≤ α a.s.

Finally, since for all n,R↑
(
λ̂†
n

)
≤ B, by Fatou’s lemma,

lim
n→∞

E
[
Ln+1

(
λ̂↑
n

)]
≤ lim sup

n→∞
E
[
R↑
(
λ̂↑
n

)]
≤ E

[
lim sup
n→∞

R↑
(
λ̂↑
n

)]
≤ α

This implies that an analogous procedure to λ̂ = inf
{
λ : n

n+1 R̂n(λ) +
B

n+1 ≤ α
}
also controls the risk asymp-

totically. In particular, taking

λ̃↑ = inf

{
λ : R̂↑

n(λ) +
B

n+ 1
≤ α

}
also results in asymptotic risk control.

Note: In the case of a monotone loss function, λ̃↑ = λ̂.
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