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Abstract: Learn Then Test (LTT) reframes risk-control as multiple hypothesis testing, to produce
finite-sample guarantess on any predictive model, without assumptions on the model or true distribution of

the underlying dataset.

1 Introduction

In LTT, begin with a learned model f̂ , then post-process the model using calibration data to make the final
predictions. The post-processing is controlled by a low-dimensional parameter λ. Multiple values of the
parameter are tested using the calibration data in order to find settings that control a user-chosen statistical
error rate.

Conformal prediction, and risk-controlling prediction sets requires that λ is one-dimensional, an that the risk
function is monotonic in λ. LTT does not require such assumptions, thus can control possibly non-monotonic
risks.

1.1 Setting and Notation

Let (Xi, Yi)i=1,...,n be the calibration set, an i.i.d. set of variables, s.t. feature vectors Xi ∈ X and responses

Yi ∈ Y, with pretrained machine learning model f̂ : X 7→ Z. The raw model outputs in Z are post-processed
to generate predictions Tλ(x) indexed by a low-dimensional parameter λ. Finally, λ̂is determined by con-

trolling a user-chosen error rate, independent of the quality of f̂ or the data distribution.

In the general framework, post-processing Tλ : X → Y ′ take on values in any space Y ′. In practice,
Y ′ = Y for predictions, or Y ′ = 2Y for prediction sets. For Tλ, the risk R (Tλ) ∈ R, denoted R(λ), is defined
to capture a problem-specific notion of the statistical error.

Objective: Train a function Tλ̂ based on f̂ and the calibration data s.t. it achieves the following error-
control property:

Definition 1 (Risk-controlling prediction). Let λ̂ ∈ Λ be a random variable. We say that Tλ̂ is an (α, δ)-
risk-controlling prediction (RCP) if P

(
R
(
Tλ̂
)
≤ α

)
≥ 1− δ.

The risk tolerance α and error level δ are chosen by the user. λ̂ is a function of the calibration data, so the
probability in the above definition will be over the randomness in the sampling of (X1, Y1) , . . . , (Xn, Yn).
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2 Risk Control in Prediction

Goal: Find a function Tλ̂ whose risk is less than some user-specified threshold α.

Algorithm Outline: Search across the collection of functions {Tλ}λ∈Λ and estimate their risk on the

calibration data (Xi, Yi)i=1,...,n. The output of the procedure will be a set of λ values, Λ̂ ⊆ Λ which are all
guaranteed to control the risk, R(λ).

1. For each λj in a discrete set Λ = {λ1, . . . , λN}, define the null hypothesis Hj : R (λj) > α. Thus,
rejecting Hj corresponds to selecting λj as a point where the risk is controlled.

2. For each null hypothesis, compute a finite-sample valid p-value using a concentration inequality.

3. Return Λ̂ = A
(
{pj}j∈{1,...,|Λ|}

)
⊂ Λ, where A is an algorithm that controls the family-wise error rate

(FWER).

Result: Except with probability δ, each λ̂ ∈ Λ̂ yields an RCP Tλ̂.

Theorem 1. Suppose pj has a distribution stochastically dominating the uniform distribution for all j under

Hj. Let A be an FWER-controlling algorithm at level δ. Then Λ̂ = A (p1, . . . , pN ) satisfies the following:

P

(
sup
λ∈Λ̂

{R(λ)} ≤ α

)
≥ 1− δ,

where the supremum over an empty set is defined as −∞. Thus, selecting any λ ∈ Λ̂, Tλ is an (α, δ)−RCP .

Theorem 1 reduces the problem of risk control into two subproblems:

1. Generate a p-value for each hypothesis.

2. Combine the hypotheses to discover the least conservative prediction that controls the risk at level α.

Result: any FWER-controlling procedure can be used to find Λ, then pick any λ ∈ Λ as the chosen RCP.
In the FDR case, choose λ̂ = min Λ̂, which yields the most discoveries, thus the lowest FNR.

2.1 Calculating Valid p-Values

Calculate a valid p-value pj for each null hypothesisHj , i.e., one satisfying u ∈ [0, 1],P (pj ≤ u) ≤ u underHj .

Idea: Calculate the empirical risk of Tλj for each j then use a concentration inequality to get the p-
value for Hj : R (λj) > α. If Hj is rejected, this implies the risk is controlled.

Define the risk function as the expectation of a loss function L : R(T ) = E[L(T (X), Y )].

Consider the bounded case where L(T (X), Y ) ∈ [0, 1], apply the hybridized Hoeffding-Bentkus (HB) in-

equality, which uses the empirical risk on the calibration set, R̂j = 1
n

∑n
i=1 L

(
Tλj

(Xi) , Yi

)
, as the test

statistic.

Proposition 1 (Hoeffding-Bentkus inequality p-values). The following is a valid p-value for Hj :

pHB
j = min

(
exp

{
−nh1

(
R̂j ∧ α, α

)}
, eP

(
Bin(n, α) ≤

⌈
nR̂j

⌉))
,

where h1(a, b) = a log(ab ) + (1− a) log(1−a
1−b ).

Note: In the unbounded case, the HB inequality no longer applies, but asymptotically valid p-values can
be obtained from the CLT.
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2.2 Multiple Hypothesis Testing

Combine p-values to form the rejection set Λ̂ using multiple hypothesis testing.

Consider a list of null hypotheses, Hj , j = 1, . . . , N , with associated p-values pj that stochastically dominate
the uniform distribution on [0, 1] under the null. Let the indices of the true nulls be J0 ⊂ {1, . . . , N} and
those of the non-nulls be J1 = {1, . . . , N}\J0.

Goal: FWER control uses the p-values to reject a subset of the Hj while limiting the probability of making
any false rejections at a level δ.

Definition 2 (FWER-controlling algorithm). An algorithm A : [0, 1]N → 2{1,...,N} is an FWER-controlling
algorithm at level δ if P (A (p1, . . . , pN ) ⊆ J1) ≥ 1− δ.

Note: p-values in the above definition may be dependent, thus form Λ̂ with the Bonferroni correction, which
satisfies Definition 2.

Proposition 2 (Bonferroni controls FWER). Let A(Bf) (p1, . . . , pN ) =
{
λj : pj ≤ δ

|Λ|

}
. Then, A(Bf) is an

FWER-controlling algorithm.

Note: For large N the multiplicity correction of Bonferroni correction degrades performance.

Thus, consider multiple testing methods that take advantage of problem structure to efficiently search the
hypothesis space, mitigating this issue. This is possible because, adjacent p-values will be highly dependent
for nearby λ, and non-nulls will generally cluster together. Thus, eventually only need one value λ̂ with
reasonably good performance that guarantees the error control.

2.2.1 Fixed Sequence Testing

The multiple testing method is designed for settings where a-priori which hypotheses are more or less likely
to control the risk is known. For example, as in the case of the FDR, the risk function may be nearly
monotonedecreasing in λ, making large λ much more promising than small ones.

Fixed sequence testing: sequentially test the hypotheses - e.g. from large λ to small λ-and stop upon the
first acceptance. More generally,the fixed sequence test can be initialized at several different points along
the ordering, provided the significance level is adjusted accordingly.

Proposition 3 (Fixed sequence testing controls FWER). Algorithm 1 is an FWER-controlling algorithm,
i.e. it satisfies Definition 2.

Proof. Consider |J | = 1, at the first index where the null is encountered, the probability of making a false
discovery is bounded by δ. Thus, the probability of making any false discoveries is bounded by δ. When
|J | > 1, the procedure is equivalent to running multiple instances of |J | = 1 in parallel, at level δ/|J |. By
the union bound, the probability of any false rejections is then bounded by δ.
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Fixed sequence testing yields the desired FWER level:

Proposition 4. Let j∗ be the index of the first null in the sequence. Then, for Algorithm 1 with |J | =
1, FWER = P (pj∗ ≤ δ). As a result, if the null p-values are (asymptotically) uniform, the FWER is
(asymptotically) δ as well.

Proof. Since the procedure is sequential, the null Hj∗ is rejected iff pj∗ ≤ δ.

Note: By contrast, Bonferroni typically yields a FWER much smaller than δ

2.2.2 A General Recipe for FWER Control

Sequential graphical testing (SGT), is a more general and powerful framework for FWER. The SGT proce-
dure is parameterized by a directed graph G comprising a node set Λ, and edge weights gi,j ∈ [0, 1] for each
pair i, j ∈ Λ obeying gi,i = 0 and

∑n
j=1 gi,j ≤ 1. In addition, each node i is allocated an initial error budget

δi such that
∑

i δi = δ. From here, the algorithm iteratively tests each hypothesis i ∈ Λ at the iteratively
updated significance level δi (i.e., checks if pi ≤ δi ). If any hypothesis i is rejected, the procedure reallocates
the error budget from node i to the rest of the nodes according to the edge weights, allowing them to be
rejected more easily.

Proposition 5 (SGT controls FWER). Algorithm 2 is an FWER-controlling algorithm, i.e. it satisfies
Definition 2.

The choices of the graph G and initial error budget {δi}i∈Λ are critical for the power of the procedure. The
general principle is to concentrate the initial error budget on hypotheses likely to reject. If these promising
hypotheses are indeed rejected, then the error budget should accrue to adjacent hypotheses, giving them a
higher chance of rejected.

2.3 Multiple Risks and Multi-Dimensional λ

Allow Λ with multiple dimensions and seek to controlm risks R1, . . . , Rm at levels α1, . . . , αm simultaneously.
Define the null hypothesis

Hj : Rl (λj) > αl, for some l ∈ 1, . . . ,m.

To test this null hypothesis, examine the finer null hypotheses, Hj,l : Rl (λj) > αl: Hj holds iff there exists
a l ∈ 1, . . . ,m such that Hj,l holds. Then apply an FWER-controlling procedure to test Hj .

Proposition 6. Let pj,l be a p-value for Hj,l, for each l = 1, . . . ,m. Define pj := maxl pj,l. Then, for all j
such that Hj holds and for all u ∈ [0, 1], we have P (pj ≤ u) ≤ u.

Thus, valid p-values are calculated for each λj , then apply techniques from the previous section to select a

set Λ̂ that controls the FWER.
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