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Objective: Show that it is impossible to derive a nontrivial upper confidence bound for the mean of
non-negative random variables in finite samples without any other restrictions.

1 Theorems

Let F be a given set of distribution functions F,G, . . . of a real variable, it must satisfy that:

1. For every F ∈ F , µF =
∫∞
−∞ zdF exists and is finite.

2. For every real m, there is an F ∈ F with µF = m.

3. F is convex, that is, if F , G ∈ F , π is a positive fraction, and H = πF (1− π)G then H ∈ F .

Let X1, X2, · · · ∼ F denote an infinite sequence of independent RVs, i.e. Pr (Xi ≦ z) = F (z). Suppose that
a (randomized, sequential) sampling procedure is given, i.e. a set of rules for observing X1, X2, · · · one by
one up to a certain stage N s.t. at each stage the decision whether to continue depends (randomly) on the
observed values in hand at that stage. The given procedure is assumed to be closed:

PF (N < ∞) = 1, (1)

for each F ∈ F .

Denote the total outcome of the sampling procedure a random variable, V, i.e. V = (X1, X2, · · · , XN ). As
in (1), for any event A defined on the sample space of V, PF (A) will denote the probability of A when F
obtains, i.e., when each Xi is distributed according to F .

If φ is a real valued function of V,EF [φ] denotes the expected value of φ (if it exists) when F obtains.

For any real number m, let Fm denote the set of all F ∈ F with µF = m.

1.1 Theorem I

For each bounded real valued function φ on the sample space of V , infF∈Fm
EF [φ] and supF∈Fm

EF [φ] are
independent of m.

In other words, even if µF is known to equal one of two given values m1 and m2, the sample V cannot
provide effective discrimination between the two hypothetical values.

Let H be the hypothesis that µF = 0 (i.e., F ∈ F0); i.e. the null hypothesis. For any test t, let βF (t)
denote the probability of rejecting H in using t when F obtains, i.e. βF (t) denotes the power function of
t - the probability that the test correctly rejects the null hypothesis when the alternative hypothesis is true.
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1. t is a somewhere unbiased level-α test if βF ≦ α for F ∈ F0 and, for some m ̸= 0 , βF ≧ α for
F ∈ Fm

2. t is a similar level-α test if βF = α for each F ∈ F0

Note: level-α test, refers to the probability of rejecting the null hypothesis when the null hypothesis is true,
i.e. the false positive rate, a.k.a. type I error.

Let φ(V ) denote the probability prescribed by t of rejecting H (the null hypothesis) on observation of V
yields the following corollary.

1.2 Corollary 1

If t is a somewhere unbiased level-α test of H, or a similar level-α test of H, then βF (t) = α for all F ∈ F .

The corollary illustrates that all tests of the value of µ, assuming that it exists, are unsuccessful.

Let I denotes a confidence set for µF , i.e. I is a (randomized) function of V .

For any real m, let C[m] denote the event that I

1.3 Corollary II

If PF (C [µF ]) ≧ 1− α for all F ∈ F , then PF (C[m]) ≧ 1− α for all m and all F ∈ F .

Proof. For each m, let pm(V ) = P (C[m] |V ) = PF (C[m]), 0 ≦ p ≦ 1. Consider a fixed m, since µF = m,
for all F ∈ Fm, we have that PF (C[µF ]) = PF (C[m]) = EF [pm] ≧ 1 − α for F ∈ Fm. By Theorem I,
for each bounded real valued function φ on the sample space of V , infF∈Fm

EF [φ] and supF∈Fm
EF [φ] are

independent of m. Hence, PF (C[m]) = EF [pm] ≧ 1−α for all F ∈ F . Proof is complete for arbitrary m.

1.4 Corollary III

Suppose that there exists at least one F ∈ F such that PF (I is a set bounded from below ) = 1. Then
infpeF {PF (C [µF ])} = 0.

Proof. For each n = 1, 2, · · ·

Let Bn denote the event that I ∈ [−n,∞) - i.e., I is bounded from below;
Let qn(V ) denote the probability of Bn given V ; 0 ≦ qn ≦ qn+1 ≦ 1.

Let B̄n denote the complement of Bn, i.e. the event that I ∈ (−∞,−n];
Let 1− qn(V ) denote the probability of B̄n given V .

Let F be a distribution in F s.t. I is bounded from below w.p. 1 when F obtains. By the Monotone Conver-
gence Theorem, we can swap the expectation and the limit: EF [limn qn] = limn EF [qn] = limn PF (Bn) =
PF (I is bounded from below ) = 1 =⇒ limn qn(V ) = 1 except on a set of points V of PF -measure zero.

For any m < −n, pm(V ) = Pr(m ∈ I | V ) ≦ Pr
(
B̄n | V

)
= 1− qn(V ), thus, except on a PF -null set,

lim
m→−∞

pm(V ) = 0. (2)
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Since PF (C[m]) = EF [pm] for all m, it follows from (2), by Lebesgue’s theorem for boundedly convergent
sequences (Bounded Convergence Theorem - corollary of Dominated Convergence Theorem), that

lim
m→−∞

PF (C[m]) = lim
m→−∞

EF [pm] = EF

[
lim

m→−∞
pm

]
= 0. (3)

By Corollary 2: infG∈F {PG (C [µG])} = infG∈F infm {PG(C[m])}. It follows from (3) that the common
value of these infima is zero.

Consider the problem of constructing a suitable point estimator for µF . Let M be an estimator, that is,
a real valued (randomized) function of V . Suppose that when F obtains, the expected loss in using M
is EP [L (M − µP )] = rP (M), where L(m) is bounded from below and limm→∞ L(m) = ∞ or limm→−∞
L(m) = ∞ (e.g., L(m) = |m|, L(m) = m2

)
.

Let ρ(F ) be a real valued functional on F .

Definition 1.1 (Uncontrollable). ρ is uncontrollable (from above) if there exists no real valued (randomized)
function of V , say S, such that infF∈F {PF (ρ(F ) < S)} > 0.

The following corollary shows there is no estimator M s.t. the expected loss rF (M) is bounded in F .

1.5 Corollary IV

For any estimator M, rP (M) is uncontrollable.

Proof. w.l.o.g. assume that limm→∞ L(m) = ∞ and replace L(m) by L(m)− infa L(a).

Further assume w.l.o.g. that L is non-negative, with infm L(m) = 0.

Consider a fixed estimator M , and LF = L (M − µF ).

Chebyshev’s Inequality Let X (integrable) be a random variable with finite non-zero variance σ2 (and
thus finite expected value µ ).Then for any real number k > 0,

Pr(|X − µ| ≥ kσ) ≤ 1

k2

Markov’s Inequality If X is a nonnegative random variable and a > 0, then the probability that X is at
least a is at most the expectation of X divided by a :

P(X ≥ a) ≤ E(X)

a

Since LF ≧ 0, by Chebyshev’s and/or Markov’s Inequality, considering the cases rF = 0, 0 < rF < ∞, and
rF = ∞ separately that PF (LF ≦ αrF ) ≧ 1 − 1

α for all α > 0 and all F . Since

P(LF ≧ αrF ) ≦
E(LF )

αrF
=

1

α
=⇒ P(LF ≦ αrF ) ≧ 1− 1

α

Suppose, contrary to Corollary 4, that there exists a random variable S with distribution determined by V ,
and a positive constant β, such that PF (rF < S) ≧ β for all F ∈ F . We can assume w.l.o.g. that S is always
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positive. Choose and fix an α > 0 such that β − 1
α > 0. Let Y = sup{m : L(m) ≦ αS} and define I to be

the random interval [M − Y,∞). Then PF (I is bounded from below) = 1 for each F . Also, for each F ∈ F ,

PF (C [µF ]) = PF (M − µF ≦ Y )

≧ PF (LF ≦ αS)

≧ PF (LF ≦ αS, rF < S)

≧ PF (LF ≦ αrF , rF < S)

≧ PF (LF ≦ αrF ) + PF (rF < S)− 1

≧ 1− 1

α
+ β − 1

> 0.

This contradiction to Corollary 3 establishes Corollary 4. The proof shows that if M is an estimator such
that rP (M) is controllable, then µP is controllable, contrary to Corollary 3, which can be used to show
the uncontrollability of certain parameters, such as the variance of F , the difference between the mean and
median values of F , and the supremum of the points of increase of F .
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