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1 Distribution-free, Risk-controlling Prediction Sets

1.1 Setting and Notation

(Xi, Yi)i=1,...,m ∼ i.i.d. s.t. features vectors Xi ∈ X and response Yi ∈ Y.

Split data: training and calibration set: {Itrain , Ical } form a partition of {1, . . . ,m}, with n = |Ical|.
w.l.o.g., Ical = {1, . . . , n}.

Fit predictive model on Itrain denote f̂ :X → Z.

Let T : X → Y ′ be a set-valued function (a tolerance region) that maps a feature vector to a set-valued

prediction typically constructed from the predictive model, f̂ . Suppose there exists a collection of such
set-valued predictors indexed by a one-dimensional parameter λ taking values in a closed set Λ ⊂ R∪{±∞}
that are nested, i.e. larger values of λ lead to larger sets:

λ1 < λ2 =⇒ Tλ1
(x) ⊂ Tλ2

(x).

Note: λ → ∞ ⇒ more conservative, i.e. larger set

Notion of error: L(y,S) : y × y′ → R≥0, loss function on prediction sets. i.e. L(y,S) = 1{y∈S}. The
loss function must satisfy the following nesting property:

S ⊂ S ′ =⇒ L(y,S) ≥ L (y,S ′) .

That is, larger sets lead to smaller loss.

Note: λ → ∞ ⇒ more conservative, i.e. larger set ⇒ smaller loss

Define the risk of a set-valued predictor T to be

R(T ) = E[L(Y, T (X))]

Consider the risk of the tolerance functions from the family {Tλ}λ∈Λ.

R(λ) is shorthand for R (Tλ).

Assume that there exists an element λmax ∈ Λ such that R (λmax) = 0.
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1.2 Procedure

Goal: find a set function whose risk is less than some user-specified threshold α. Analyze collection of func-
tions {Tλ}λ∈T and estimate their risk on data not used for model training, Ical. Then show that by choosing
the value of λ in a certain way, we can guarantee that the procedure has risk less than α with high probability.

Pointwise upper confidence bound (UCB) for the risk function for each λ:

P (R(λ) ≤ R̂+(λ)︸ ︷︷ ︸
UCB

) ≥ 1− δ

where R̂+(λ) may depend on (X1, Y1) , . . . , (Xn, Yn). Choose λ̂ as the smallest value of λ s.t. the entire
confidence region to the right of λ falls below the target risk level α :

λ̂ ≜ inf
{
λ ∈ Λ : R̂+ (λ′) < α, ∀λ′ ≥ λ

}
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1.3 Simplified Hoeffding Bound

1.3.1 Theorem 1: Validity of UCB Calibration

Let (Xi, Yi)i=1,...,n be an i.i.d. sample, let L(·, ·) be a loss satisfying the monotonicity condition:

S ⊂ S ′ =⇒ L(y,S) ≥ L (y,S ′) ,

and let {Tλ}λ∈Λ be a collection of set predictors satisfying the nesting property in

λ1 < λ2 =⇒ Tλ1
(x) ⊂ Tλ2

(x).

Let R : Λ → R be a continuous monotone nonincreasing function such that R(λ) ≤ α for some λ ∈ Λ.

Suppose R̂+(λ) is a random variable for each λ ∈ Λ such that

P (R(λ) ≤ R̂+(λ)︸ ︷︷ ︸
UCB

) ≥ 1− δ

holds pointwise for each λ. Then, for λ̂ ≜ inf
{
λ ∈ Λ : R̂+ (λ′) < α,∀λ′ ≥ λ

}
,

P
(
R
(
Tλ̂
)
≤ α

)
≥ 1− δ

That is, Tλ̂ is a (α, δ)−RCPS.

Proof. Consider the smallest λ that controls the risk:

λ∗ ≜ inf{λ ∈ Λ : R(λ) ≤ α}

Suppose R(λ̂) > α =⇒ λ̂ < λ∗ by the definition of λ∗ and the monotonicity and continuity of R(·).

Then R(λ̂) > α =⇒ λ̂ < λ∗ =⇒ R̂+ (λ∗) < α by the definition of λ̂.

But, since R (λ∗) = α (by continuity) and by the coverage property

P (R(λ) ≤ R̂+(λ)︸ ︷︷ ︸
UCB

) ≥ 1− δ,

this happens with probability at most δ since the coverage property implies

P (R(λ̂) > R̂+(λ)) < δ =⇒ P (R(λ̂) > α > R̂+ (λ∗)) < δ =⇒ P (R(λ̂) > α) < δ =⇒ P (R(λ̂) ≤ α) ≥ 1− δ

1.3.2 Hoeffding’s Inequality

Suppose the loss is bounded above by one. Then,

P (R̂(λ)−R(λ) ≤ −x) ≤ exp
{
−2nx2

}
.

This implies an upper confidence bound

R̂+
sHoef(λ) = R̂(λ) +

√
1

2n
log

(
1

δ

)
.

Applying Theorem 1 with

λ̂ = λ̂sHoef ≜ inf
{
λ ∈ Λ : R̂+

sHoef (λ
′) < α, ∀λ′ ≥ λ

}
= inf

{
λ ∈ Λ : R̂(λ) < α−

√
1

2n
log

(
1

δ

)}
,

we can generate an RCPS.

1.3.3 Theorem 2: RCPS from Hoeffding’s Inequality

In the setting of Theorem 1, assume also that the loss is bounded by one. Then, Tλ̂ sHoef is a (α, δ)−RCPS.
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1.4 Hoeffding-Bentkus Bound

In general, a UCB can be obtained if the lower tail probability of R̂(λ) can be controlled, which is nearly
tight for binary loss function.

1.4.1 Proposition 2:

Suppose g(t;R) is a nondecreasing function in t ∈ R for every R :

P (R̂(λ) ≤ t) ≤ g(t;R(λ))

Then, R̂+(λ) = sup{R : g(R̂(λ);R) ≥ δ} satisfies

P (R(λ) ≤ R̂+(λ)) ≥ 1− δ.

This result shows how a tail probability bound can be inverted to yield a UCB. Thus g(R̂(λ);R) is a
conservative p-value for testing the one-sided null hypothesis H0 : R(λ) ≥ R.

Proof. Let G denote the CDF of R(λ).

If R(λ) > R+(λ), then by definition, g(R̂(λ);R(λ)) < δ, since R̂+(λ) = sup{R : g(R̂(λ);R) ≥ δ}.

As a result,
P (R(λ) > R̂+(λ)) ≤ P (g(R̂(λ);R(λ)) < δ) ≤ P (G(R̂(λ)) < δ).

Let G−1(δ) = sup{x : G(x) ≤ δ}. Then,

P (G(R̂(λ)) < δ) ≤ P (R̂(λ) < G−1(δ)) ≤ δ.

This implies that P (R(λ) > R̂+(λ)) ≤ δ and completes the proof.

1.4.2 Proposition 3: Hoeffding’s Inequality Tighter Version

Suppose the loss is bounded above by one. Then, for any t < R(λ),

P (R̂(λ) ≤ t) ≤ exp {−nh1(t;R(λ))}

where h1(t;R) = t log(t/R) + (1− t) log((1− t)/(1−R)).

Note: The weaker Hoeffding inequality is implied by Proposition 3 using the fact that h1(t;R) ≥ 2(t−R)2.

1.4.3 Proposition 4: Bentkus’ Inequality

Suppose the loss is bounded above by one. Then,

P (R̂(λ) ≤ t) ≤ eP (Binom(n,R(λ)) ≤ ⌈nt⌉),

where Binom(n, p) denotes a binomial random variable with sample size n and success probability p.

Note: Bentkus inequality implies that the Binomial distribution is the worst case up to a small constant.
The Bentkus inequality is nearly tight if the loss function is binary, in which case nR̂(λ) is binomial.

Putting Propositions 3 and 4 together, we obtain a lower tail probability bound for R̂(λ) :

gHB(t;R(λ)) ≜ min (exp {−nh1(t;R(λ))} , eP (Binom(n,R(λ)) ≤ ⌈nt⌉)) .

By Proposition 2, we obtain a (1− δ) upper confidence bound for R(λ) as

R̂+
HB(λ) = sup

{
R : gHB(R̂(λ);R) ≥ δ

}
.
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1.4.4 Theorem 3: RCPS from the Hoeffding-Bentkus Bound

In the setting of Theorem 1, assume additionally that the loss is bounded by one. Obtain λ̂HB from R̂+
HB(λ)

as λ̂ ≜ inf
{
λ ∈ Λ : R̂+ (λ′) < α, ∀λ′ ≥ λ

}
. Then, Tλ̂HB is a (α, δ)-RCPS.
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1.5 Waudby-Smith-Ramdas Bound

For non-binary loss functions, and bound that is adaptive to the variance via online inference and martingale
analysis.

1.5.1 Proposition 5 (Waudby-Smith-Ramdas Bound)

Let Li(λ) = L (Yi, Tλ (Xi)) and

µ̂i(λ) =
1/2 +

∑i
j=1 Lj(λ)

1 + i
, σ̂2

i (λ) =
1/4 +

∑i
j=1 (Lj(λ)− µ̂j(λ))

2

1 + i
, vi(λ) = min

{
1,

√
2 log(1/δ)

nσ̂2
i−1(λ)

}
.

Further, let

Ki(R;λ) =

i∏
j=1

{1− vj(λ) (Lj(λ)−R)} , R̂+
WSR(λ) = inf

{
R ≥ 0 : max

i=1,...,n
Ki(R;λ) >

1

δ

}
.

Then, R̂+
WSR(λ) is a(1− δ) upper confidence bound for R(λ).

Proof. LetKi = Ki(R(λ);λ),F0 be the trivial sigma-field and Fi be the sigma-field generated by (L1(λ), . . . , Li(λ)).
Then, F0 ⊂ F1 ⊂ . . . ⊂ Fn is a filtration. By definition, vi(λ) ∈ Fi−1 is a predictable sequence and Ki ∈ Fi.
Since E [Li(λ)] = R(λ),

E [Ki | Fi−1] = E [Ki−1(1− vi(λ) (Li(λ)−R(λ))) | Fi−1] = Ki−1E [1− vi(λ) (Li(λ)−R(λ)) | Fi−1] = Ki−1

In addition, since vi ∈ [0, 1] and (Li(λ)−R(λ)) ∈ [−1, 1], each component 1 − vi(λ) (Li(λ)−R(λ)) ≥ 0.
Thus, {Ki : i = 1, . . . , n} is a non-negative martingale with respect to the filtration {Fi : i = 1, . . . , n}.

Ville’s Inequality
Let X0, X1, X2, . . . be a non-negative supermartingale. Then, for any real number a > 0,

P

[
sup
n≥0

Xn ≥ a

]
≤ E [X0]

a

By Ville’s inequality,

P

(
max

i=1,...,n
Ki ≥

1

δ

)
≤ δ.

However, since vi ≥ 0,Ki(R;λ) is increasing in R almost surely for every i. By definition of R̂+
WSR(λ), if

R̂+
WSR(λ) < R(λ), then P (maxi=1,...,n Ki ≥ 1/δ). Therefore,

P
(
R̂+

WSR(λ) < R(λ)
)
≤ P

(
max

i
Ki ≥

1

δ

)
≤ δ.

This proves that R̂+
WSR(λ) is a valid upper confidence bound of R(λ).

1.5.2 Theorem 4: RCPS From the Waudby-Smith-Ramdas Bound

In the setting of Theorem 1, assume additionally that the loss is bounded by 1. Then, Tλ̂WSR is a(α, δ) −
RCPS.
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2 Unbounded Losses

2.0.1 Proposition A.1 (Impossibility of Valid UCB for Unbounded Losses in Finite Samples)

Let F be the class of all distributions supported on [0,∞) with finite mean, and µ(F ) be the mean of the

distribution F . Let µ̂+be any function of Z1, . . . , Zn
i.i.d.∼ F such that P (µ̂+ ≥ µ(F )) ≥ 1− δ for any n and

F ∈ F . Then, P (µ̂+ = ∞) ≥ 1− δ.

Proof. F satisfies the conditions (i), (ii), and (iii) in ”The Nonexistence of Certain Statistical Procedures in
Nonparametric Problems.” For any such µ̂+, [0, µ̂+] is a (1− δ) confidence interval of µ(F ). By Corollary II,
we know that for any µ ∈ {µ(F ) : F ∈ F} and F ∈ F

PF

(
µ ∈

[
0, µ̂+

])
≥ 1− δ ⇐⇒ PF

(
µ ≤ µ̂+

)
≥ 1− δ.

The proof is completed by letting µ → ∞.

It is impossible to derive a nontrivial upper confidence bound for the mean of nonnegative random variables
in finite samples without any other restrictions. Thus, we must analyze distributions that satisfy some
regularity conditions. In particular, consider distributions satisfying a bound on the coefficient of variation.

2.1 The Pinelis-Utev Inequality

For nonnegative RVs with bounded coeffecient of variation, the Pinelis-Utev inequality gives a tail bound:

2.1.1 Proposition 6 (Pinelis And Utev)

. Let cv(λ) = σ(λ)/R(λ) denote the coefficient of variation. Then, for any t ∈ (0, R(λ)],

P (R̂(λ) ≤ t) ≤ exp

{
− n

c2v(λ) + 1

[
1 +

t

R(λ)
log

(
t

eR(λ)

)]}
By Proposition 2, this implies an upper confidence bound of R(λ) :

R̂+
PU(λ) = sup

{
R : exp

{
− n

c2v(λ) + 1

[
1 +

R̂(λ)

R
log

(
R̂(λ)

eR

)]}
≥ δ

}
.

Thus if cv(λ) is known, a nontrivial UCB can be derived. Define λ̂PU with the UCB calibration procedure:

λ̂ ≜ inf
{
λ ∈ Λ : R̂+ (λ′) < α, ∀λ′ ≥ λ

}
to get the following guarantee:

2.1.2 Theorem 5 (RCPS from Pinelis-Utev Inequality).

In the setting of Theorem 1, suppose in addition that for each λ ∈ Λ, cv(λ) ≤ cv for some constant cv. Then,
Tλ̂PU is a (α, δ)−RCPS.
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3 Asymptotic Results

When no finite-sample result is available, the UCB calibration procedure can still be use to get prediction
sets with asymptotic validity. Suppose the loss L (Y, Tλ(X)) has a finite second moment for each λ. Then,
since the losses for each λ are i.i.d., the CLT can be applied to get

lim
n→∞

P

(√
n(R̂(λ)−R(λ))

σ̂(λ)
≤ −t

)
≤ Φ(−t),

where Φ denotes the standard normal CDF. This yields an asymptotic upper confidence bound for R(λ) :

R̂+
CLT(λ) = R̂(λ) +

Φ−1(1− δ)σ̂(λ)√
n

.

Let λ̂CLT = inf
{
λ ∈ Λ : R̂+

CLT (λ′) < α, ∀λ′ ≥ λ
}
. Then, Tλ̂CLT is an asymptotic RCPS.

3.0.1 Theorem 6 (Asymptotically VALid RCPS).

In the setting of Theorem 1, assume additionally that L (Y, Tλ(X)) has a finite second moment for each λ.
Then,

lim sup
n→∞

P
(
R
(
Tλ̂ CLT

)
> α

)
≤ δ.

Proof. Define λ∗ ≜ inf{λ ∈ Λ : R(λ) ≤ α}. Suppose R
(
λ̂CLT

)
> α. By the definition of λ∗ and the

monotonicity and continuity of R(·), this implies λ̂CLT < λ∗. By the definition of λ̂CLT , this further implies

that R̂+ (λ∗) < α. But

lim sup
n

P
(
R̂+ (λ∗) < α

)
= δ,

by the CLT, which implies the desired result.

This only requires a pointwise CLT for each λ ∈ Λ, analogous to the finite-sample version in Theorem 1.

4 Calibration Set Size

UCB calibration is always guaranteed to control the risk by Theorem 1. However, if the calibration set is
too small, then the sets may be larger than necessary. Since the RCPS finds the last point where the UCB
R̂+(λ) is above the desired level α, minimal set sizes are produced when R̂+(λ) is close to the true risk R(λ).

Thus, a general procedure to find the sufficient number of calibration points is when R̂+(λ) = R(λ)± 10%.

The required number of samples will increase slightly if a higher confidence level (i.e., smaller δ ) is used,
but the dependence on δ is minimal, since the bounds will roughly scale as log(1/δ).

5 Generating the Set-Valued Predictors

Denote the infinitesimal risk of a continuous response y w.r.t. a set S ⊆ Y as its conditional risk density,

ρx(y,S) = L(y,S)pY |X=x(y).

The same algorithm and theoretical result hold in the discrete case: ρx(y,S) = L(y,S)P (Y = y | X = x).
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5.1 A Greedy Procedure

Construction the tolerance functions Tλ based on the estimated conditional risk density. Assume that the
predictor is p̂x(y), with an estimate of pY |X=x(y), and let ρ̂x(y,S) = L(y,S)p̂x(y).

1. Index a family of sets Tλ nested in λ ≤ 0 by iteratively including the riskiest portions of Y

2. Re-computing the risk densities of the remaining element

5.2 Optimality Properties of the Greedy Procedure

The greedy algorithm is optimal when the loss function has the simple form L(y,S) = Ly1{y/∈S}, for constants
Ly. This assumption on L describes the case where every y has a different, fixed loss if it is not present in
the prediction set. In this case, the sets returned by Algorithm 1 have the form

Tλ(x) = {y′ : ρ̂x (y′, ∅) ≥ ζ(λ)} .

That is, the set of response variables with risk density above some threshold is returned.

Supposed that the exact conditional probability density, pY |X=x(y), and therefore the exact ρx(y,S) is
known. The prediction sets produced by Algorithm 1 then have the smallest average size among all proce-
dure that control the risk, as stated next.

5.2.1 Theorem 7 (Optimality of The Greedy Sets).

In the setting above, let T ′ : X → Y ′ be any set-valued predictor such that R (T ′) ≤ R (Tλ), where Tλ is given
by Algorithm 1. Then,

E [|Tλ(X)|] ≤ E [|T ′(X)|]

Proof. Suppose R (T ′) ≤ R (Tλ). Write ρx(y) for ρx(y; ∅). Then,∫
X

∫
T ′(x)

ρx(y)dydP (x) ≥
∫
X

∫
Tλ(x)

ρx(y)dydP (x).

This further implies ∫
X

∫
T ′(x)\Tλ(x)

ρx(y)dydP (x) ≥
∫
X

∫
Tλ(x)\T ′(x)

ρx(y)dydP (x).

For y ∈ (T ′(x)\Tλ(x)), we have ρx(y) < ζ, whereas for y ∈ (Tλ(x)\T ′(x)), we have ρx(y) ≥ ζ. Therefore,∫
X

∫
T ′(x)\Tλ(x)

1dydP (x) ≥
∫
X

∫
Tλ(x)\T ′(x)

1dydP (x),

which implies the desired result.
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5.3 Optimality in a More General Setting

Ccharacterize the set-valued predictor that leads to the smallest sets for a wider class of losses. Suppose the
loss takes the form

L(y;S) =
∫
z∈Sc

ℓ(y, z)dµ(z),

for some nonnegative ℓ and a finite measure µ. The function ℓ measures the cost of not including z in the
prediction set when true response is y. For instance, ℓ(y, z) = LyI(y = z) and µ is the counting measure in
the case considered above. Then, the optimal Tλ is given by

Tλ(x) = {z : E[ℓ(Y ; z) | X = x] ≥ −λ},

for λ ∈ Λ ⊂ (−∞, 0], as stated next.

5.3.1 Theorem 8 (Optimality of Set Predictors, Generalized Form).

In the setting above, let T ′ : X → Y ′ be any set-valued predictor such that R (T ′) ≤ R (Tλ), where Tλ(x) =
{z : E[ℓ(Y ; z) | X = x] ≥ −λ}. Then,

E [|Tλ(X)|] ≤ E [|T ′(X)|] .

Proof. If R (T ′) ≤ R (Tλ), then

E [E [L (Y ; T ′(X)) | X]] ≤ E [E [L (Y ; Tλ(X)) | X]]

=⇒E

[
E

[∫
z∈T ′(X)

ℓ(Y ; z)dµ(z) | X

]]
≤ E

[
E

[∫
z∈T c

λ (X)

ℓ(Y ; z)dµ(z) | X

]]

=⇒E

[
E

[∫
z∈T ′(X)

ℓ(Y ; z)dµ(z) | X

]]
≥ E

[
E

[∫
z∈Tλ(X)

ℓ(Y ; z)dµ(z) | X

]]

=⇒E

[∫
z∈T ′(X)

E[ℓ(Y ; z) | X]dµ(z)

]
≥ E

[∫
z∈T(X)

E[ℓ(Y ; z) | X]dµ(z)

]

=⇒E

[∫
z∈T ′(X)\Tλ(X)

E[ℓ(Y ; z) | X]dµ(z)

]
≥ E

[∫
z∈Tλ(X)\T ′(X)

E[ℓ(Y ; z) | X]dµ(z)

]

=⇒E

[∫
z∈T ′(X)\Tλ(X)

−λdµ(z)

]
≥ E

[∫
z∈Tλ(X)\T ′(X)

−λdµ(z)

]
=⇒E [|T ′(X)\Tλ(X)|] ≥ E [|Tλ(X)\T ′(X)|]
=⇒E [|T ′(X)|] ≥ E [|Tλ(X)|] .

Note: For the case considered in the greedy setting: E[ℓ(Y ; z) | X = x] = Lzp(z | x).
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