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Abstract: Presents bounds on quantiles of the loss distribution of a predictor.

1 Introduction

Goal: Produce predictive algorithms that are rigorous, i.e. produce bounds that can be trusted with high
confidence, and flexible, i.e. applicable to an array of loss-related risk measures and adaptive to the difficulty
of the instance.

Contribution: Produce lower confidence bounds on the cumulative distribution function (CDF) of a predic-
tor’s loss distribution, which can be converted into an upper bound on the quantile function. Provide bounds
for risk measures that can be expressed as weighted integrals of the quantile function, a.k.a. quantile-based
risk measures (QBRM): expected loss, VaR, CVaR, and VaR-interval.

Definition 1.1 (Expected Loss). Mean loss over the test distribution.

Definition 1.2 (Value at Risk (VaR)). The β-VaR measures the maximum loss incurred on a specific
quantile, after excluding a 1−β proportion of high-loss outliers, i.e. maximum loss incurred with probability
β.

Definition 1.3 (Conditional Value at Risk (CVaR)). The β-CVaR measures the mean loss for the worst
1− β proportion of the population.

Definition 1.4 (VaR-interval). Optimizing an uncertain loss quantile that belongs to a known range, i.e.
for a range of β values.

1.1 Setting and Notation

Assume a black-box predictor h : Z → Ŷ that maps from an input space Z to a space of predictions Ŷ.

Assume a loss function ℓ : Ŷ × Y → R that quantifies the quality of a prediction Ŷ with respect to the
target output Y .

Let (Z, Y ) be drawn from an unknown data distribution D over Z × Y and define the random variable
X ≜ ℓ(h(Z), Y ) to be the loss induced by h on D.

Recall that the CDF of a random variable X is defined as F (x) ≜ P (X ≤ x); i.e. F is the CDF of
the loss RV X

Goal: Produce rigorous upper bounds on the risk R(F ) for a class of risk measures R ∈ R, given a
set of validation loss samples X1:n.
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1.2 Quantile-based Risk Measures

Recall that the quantile function is defined as F−1(p) ≜ inf{x : F (x) ≥ p}.

Definition 1.5 (Quantile-based Risk Measure). Let ψ(p) be a weighting function such that ψ(p) ≥ 0 and∫ 1

0
ψ(p)dp = 1. The quantile-based risk measure defined by ψ is

Rψ(F ) ≜
∫ 1

0

ψ(p)F−1(p)dp. (1)

2 Quantile Risk Control

Quantile Risk Control (QRC) achieves rigorous control of quantile-based risk measures (QBRM), by invert-
ing a one-sided goodness-of-fit test statistic to produce a lower confidence bound on the loss CDF. This can
subsequently be used to form a family of upper confidence bounds that hold for any QBRM.

More formally, specify a confidence level δ ∈ (0, 1) and let X(1) ≤ . . . ≤ X(n) denote the order statistics of
the validation loss samples. QRC consists of the following high-level steps:

1. Choose a one-sided test statistic of the form S ≜ min1≤i≤n si
(
F
(
X(i)

))
, where F is the (unknown)

CDF of X1, . . . , Xn.

2. Compute the critical value sδ such that P (S ≥ sδ) ≥ 1− δ.

3. Construct a CDF lower confidence bound F̂n defined by coordinates
(
X(1), b1

)
, . . . ,

(
X(n), bn

)
where

bi ≜ s−1
i (sδ).

4. For any desired QBRM defined by weighting function ψ, report Rψ

(
F̂n

)
as the upper confi dence

bound on Rψ(F ).

2.1 CDF Lower Bounds are Risk Upper Bounds

WTS: A lower bound G on the true loss CDF F incurred by a predictor can be used to bound Rψ(F ) for
any quantile-based risk measure weighting function.

For CDFs F and G, let F ⪰ G denote F (x) ≥ G(x) for all x ∈ R.

Theorem 1. Let F and G be CDFs such that F ⪰ G. Then Rψ(F ) ≤ Rψ(G) for any weighting function
ψ(p) as defined in Definition 1.5

Proof. Consider G−1(p). By the definition of the quantile function, G
(
G−1(p)

)
≥ p.

F ⪰ G =⇒ F (p) ≥ G(p) =⇒ F
(
G−1(p)

)
≥ G

(
G−1(p)

)
≥ p =⇒ F−1

(
F
(
G−1(p)

))
≥ F−1(p).

Since x ≥ F−1 ◦ F (x), this implies G−1(p) ≥ F−1
(
F
(
G−1(p)

))
=⇒ G−1(p) ≥ F−1(p).

Rψ(F ) ≤ Rψ(G) holds by Definition 1.5.

Consider a finite sample setting, X1:n:

Definition 2.1 (Lower Confidence Bounds (LCB) on the CDF). Denote F̂n a (1− δ)-CDF-LCB if for any

F, P
(
F ⪰ F̂n

)
≥ 1− δ, where F̂n is a function of X1:n ∼iid F .

Corollary 1. Suppose that F̂n is a (1− δ)-CDF-LCB. Then P
(
Rψ(F ) ≤ Rψ

(
F̂n

))
≥ 1− δ.

Proof. F ⪰ Ĝ (X1:n) =⇒ Rψ(F ) ≤ Rψ(G) by Theorem 1. Result follows immediately.
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2.2 Inverting Goodness-of-fit Statistics to Construct CDF Lower Bounds

WTS: Produce and use a set of lower confidence bounds on the uniform order statistics to bound F .

Let U1, . . . , Un ∼iid U(0, 1), with order statistics: U(1) ≤ . . . ≤ U(n).

Consider a one-sided minimum goodness-of-fit (GoF) statistic of the following form:

S ≜ min
1≤i≤n

si
(
U(i)

)
, (2)

where s1, . . . , sn : [0, 1] → R are right continuous monotone nondecreasing functions.

Theorem 2. Let sδ = infr{r : P (S ≥ r) ≥ 1 − δ}, where δ ∈ (0, 1) and S is defined above. Let
X1, . . . , Xn ∼iid F , where F is an arbitrary CDF and let X(1) ≤ . . . ≤ X(n) be the corresponding or-

der statistics. Then P
(
∀i : F

(
X(i)

)
≥ s−1

i (sδ)
)
≥ 1− δ, where ∀s ∈ R, s−1

i (s) ≜ infu{u : si(u) ≥ s} is the
generalized inverse of si.

Proof. For general F , the generalized inverse function if defined as: F−1(p) ≜ inf{x : F (x) ≥ p}.

Since
P
(
F−1(U) ≤ c

)
= P (U ≤ F (c)) = F (c).

F−1(U) has the same distribution as X ∼ F , where U is a uniform random variable defined on [0, 1]. In
addition, F−1 preserves ordering (by definition of the quantile function), i.e. F−1

(
U(1)

)
≤ . . . ≤ F−1

(
U(n)

)
.

Thus, X(i) has the same distribution as F−1
(
U(i)

)
.

Since
F ◦ F−1(t) ≥ t

for any t ∈ [0, 1] and any CDF F . Thus,

F
(
F−1

(
U(i)

))
≥ U(i) ≥ s−1

i (sδ) .

where the second inequality holds because given the definition of sδ,

P (S ≥ sδ) ≥ 1− δ.

and definition s−1
i where

S ≜ min
1≤i≤n

si
(
U(i)

)
,

S ≥ sδ =⇒ U(i) ≥ s−1
i (sδ) for all i ∈ {1, . . . , n}. Thus,

P
(
∀i, F

(
X(i)

)
≥ s−1

i (sδ)
)
= P

(
∀i, F

(
F−1

(
U(i)

)
≥ s−1

i (sδ)
)
= P

(
∀i, U(i) ≥ s−1

i (sδ)
)
≥ P (S ≥ sδ) ≥ 1−δ

since X(i) is of the same distribution as F−1
(
U(i)

)
for all i ∈ [n].

2.3 Conservative CDF Completion

WTS: Constraints given by Theorem 2 form a (1− δ)-CDF-LCB via conservative completion of the CDF
F given the order statistics of a finite sample from F that is defined by a set of functions s1, . . . , sn.

Theorem 3. Let F be an arbitrary CDF satisfying F (xi) ≥ bi for all i ∈ {1, . . . , n}, where x1 ≤ . . . ≤ xn
and 0 ≤ b1 ≤ . . . ≤ bn < 1. Let us denote x = (x1, x2, · · · , xn) and b = (b1, b2, · · · , bn) and let x+ ∈ R ∪∞
be an upper bound on X ∼ F , i.e. F (x+) = 1. Let

G(x,b)(x) ≜



0, for x < x1

b1, for x1 ≤ x < x2

. . .

bn, for xn ≤ x < x+

1, for x+ ≤ x.

Then, F ⪰ G(x,b).
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Proof.

F (xi) ≥



0, for x < x1 =⇒ F (x) ≥ 0

. . .

bi, for xi ≤ x < xi+1 =⇒ F (x) ≥ F (xi) ≥ bi

. . .

1, for x+ ≤ x.

If x ≥ x+, F (x) = 1. Therefore, F (x) ≥ G(x,b)(x).

Corollary 2. Let S be the test statistic S ≜ min1≤i≤n si
(
U(i)

)
and sδ = infr{r : P (S ≥ r) ≥ 1 − δ}. Let

X1, . . . , Xn ∼ iid F , where F is an arbitrary CDF and let X(1) ≤ . . . ≤ X(n) be the corresponding order

statistics. Then with probability at least 1 − δ, F ⪰ G(X(1:n),s
−1
1:n(sδ))

, where X(1:n) ≜
(
X(1), . . . , X(n)

)
and

s−1
1:n (sδ) ≜

(
s−1
1 (sδ) , . . . , s

−1
n (sδ)

)
.

Proof. By Theorem 3, ∀i, F
(
X(i)

)
≥ s−1

i (sδ) =⇒ F (x) ≥ G(X(1:n)s
−1
1:n(sδ))

, which implies

P
(
F (x) ≥ G(X(1:n),s

−1
1:n(sδ))

(x)
)
≥ P

(
∀i, F

(
X(i)

)
≥ s−1

i (sδ)
)
.

Then, by Theorem 2, P
(
∀i, F

(
X(i)

)
≥ s−1

i (sδ)
)
≥ 1− δ.

Therefore, F̂n ≜ G(X(1:n),s
−1
1:n(sδ))

is a (1− δ)-CDF-LCB that can be used to select a predictor to minimize a

risk measure.

2.4 Interpreting Standard Tests of Uniformity as Minimum-type Statistics S

Several standard tests of uniformity may be viewed as instances of the minimum-type statistic S ≜ min1≤i≤n si
(
U(i)

)
.

1. A one-sided Kolmogorov-Smirnov (KS) statistic with the uniform as the null hypothesis can be
expressed as

D+
n ≜ max

1≤i≤n

(
i

n
− U(i)

)
= − min

1≤i≤n

(
U(i) −

i

n

)
,

Thus D+
n = −S, where si(u) = u− i

n .

2. A one-sided Berk-Jones (BJ) statistic is defined as

M+
n ≜ min

1≤i≤n
IU(i)

(i, n− i+ 1)

where Ix(a, b) is the CDF of Beta(a, b) evaluated at x. Thus M+
n = S where si(u) = Iu(i, n− i+ 1).

2.5 Bounding Multiple Predictors Simultaenously

Let ϕ be an arbitrary black box function and t1, . . . , tm be a set of functions, e.g. different thresholding
operations. Then define a finite set of predictors H = {t1 ◦ ϕ, . . . , tm ◦ ϕ}. The loss R.V. for a random
predictor h ∈ H is denoted by Xh ∼ Fh with corresponding validation loss samples Xh

1:n.

Theorem 4. Suppose that F̂n is a (1− δ/|H|)-CDF-LCB. Then P
(
∀h ∈ H : Fh ⪰ F̂hn

)
≥ 1− δ.

Proof. By applying a union bound argument over h ∈ H :

P
(
∃h ∈ H : Fh ⪰̸ Ĝ

(
Xh

1:n

))
≤

∑
h∈H

P
(
Fh ⪰̸ Ĝ

(
Xh

1:n

))
≤ δ.
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2.6 Novel Truncated Berk-Jonest Statistics

Contribution: Novel goodness-of-fit statistics: two forms of a truncated Berk-Jones statistic, targeting a
range of quantiles.

1. Truncated one-sided Berk-Jones targets a quantile interval [βmin, 1), defined as:

M+
n,k ≜ min

k≤i≤n
IU(i)

(i, n− i+ 1)

by dropping lower order statistics that do not affect the bound on F−1 (βmin). The statistic can be
realized by using

si(u) =

{
Iu(i, n− i+ 1), for k ≤ i ≤ n

1, otherwise

• Given βmin, define k
∗ (βmin) ≜ min

{
k : s−1

k

(
skδ
)
≥ βmin

}
, where skδ is the critical value of M+

n,k.

• Bisection search can be used to compute k∗, then the inversion of M+
n,k∗(βmin)

provides a CDF

lower bound targeted at quantiles βmin and above.

2. Truncated two-sided Berk-Jones targets a quantile interval [βmin, βmax], defined as:

M+
n,k,ℓ ≜ min

k≤i≤ℓ
IU(i)

(i, n− i+ 1)

• Compute k∗ (βmin) as in the one-sided case

• Remove higher order statistics using the upper endpoint of ℓ∗ ≜ min
{
ℓ : s−1

ℓ

(
sk

∗,ℓ
δ

)
≥ βmax

}
,

where sk
∗,ℓ
δ is the corresponding critical value.
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